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A CRITICAL ANALYSIS OF NUMERICAL TECHNIQUES:

THE PISTON-DRIVEN INVISCID FLOW *

by

E
Gino Moretti
Polytechnic Institute of Brooklyn

Graduate Center, Farmingdale, New York

ABSTRACT

This paper consists of two parts. In the first, a critical
analysis of well-known procedures for the computation of one-
dimensional shocked flows is made, in order to show the incon-
veniences of computing finite differences across a discontinuity and
to prove that the use of the enuations of motion in conservation form
does not make the results any more accurate. In the second, a
technique is developed to treat one-dimensional inviscid problems
and it is applied to the problem of an accelerating piston. Practical
and safe ways to predict the formation of a shock and to follow it

up in its evolution are :iven.

* This research has been conducted under Contract No. Nonr 839(38)
for PROJECT STRATEGIC TECHNOLOGY and was made possible by
the support of the Advanced Research Projects Agency under Order
No., 529 through the Office of Naval Research.

*Professor of Aerospace Engineering.



Introduction

The numerical treatment of one-dimensional problems has been
the object of a great number of papers, mostly intended to provide theo-
retical and experimental comparisons between different numerical tech-
niques. Such comparisons have failed to provide a positive contribution to
the state of the art. They have been unable,for example, to point out why
the results of the computations are generally affected by spurious oscilla-
tions, and why their accuracy is so poor, although some qualitative agree-
ment with exact solutions, when available, can be observed.

In Ref. 1 a general line of attack for gas dynamics problems has
been presented, the philosophy of which is that computations can be per-
formed in any number of space dimensions and time with as great an
accuracy as desired. Such a goal can be achieved not only without increas-
ing the computational time beyond unacceptable limits but rather reducing
it by at least one order of magnitude.

A test of the technique outlined in Ref. ! is given here for one-
dimensional problems. A detailed analysis of some of these problems is
necessary in order to explain the physical subtlety of certain non-linear
phenomena and of their interpretation from the view point of numerical
analysis.

In the first part of the paper, the problem of a steady shock sepa-
rating two regions of uniform flow is examined in an attempt to explain the
origin of certain well-known numerical difficulties. In the second and third
parts, an increasingly sophisticated technique is introduced, to show how
such difficulties can be, one by one, eliminated. A demonstration of how
the technique can be applied to very complicated one-dimensional inviscid

problems will follow in another paper.
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1. Shocks and the equations in divergence form

In the typical one-dimensional problem analyzed in the literature,
a shock proceeds, at a constant speed, into a gas at rest. The region
behind the shock is, then, uniform. The flow pattern can be imagined to
be produced by a piston suddenly set intc motion at a constant speed
(Fig. 1). The shock is not assumed to be a discontinuity; the numerical
techniques intend to provide a way of representing the shock as a fast,
but continuous, transition between two constant states.
If the approach outlined in Ref. 1 were used for this problem, the
flow field would be divided into two regions of continuous flow and the
shock confined to the common boundary. Then the problem becomes
trivial; in both regions separated by the shock the flow is uniform, all
space derivatives vanish identically and consequently the time derivatives

vanish identically. There is no doubt that, regardless of the technique
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FIG.| FLOW PRODUCED BY A PISTON MOVING AT
A CONSTANT SPEED



being used, the two constant states are maintained. As far as the shock
itself is concerned, a single application of the Rankine-Hugoniot conditions
provides the solution at any instant of time since the shock velocity is con~
stant. In the first part of this paper, however, we will re-examine the
simple flow problem outlined in Fig. 1 to discuss the basic philosophy of

the ""smeared shock' approach and to justify our choice of the other approach
as outlined in Ref. 1.

There is no doubt that if one could handle shocks by the same tech-
nique used in regions of continuous flow, the general logic of a computa-
tional program would be highly simplified, particularly when a flow is
expected to be traversed by shocks in both directions and when the problem
depends on more than one space variable. However, anyone who has some

experience in computing by the method of characteristics knows that, as

soon as the characteristics coalesce and a shock builds up, the method
breaks down. The only way the computation can be continued consists

of fitting the shock as a discontinuity, separating two regions of continu-
ous flow where the method of characteristics is applicable. The physical
nature of the shock is reflected in the numerical procedure by the fact

that each shock point is reached by three characteristics, two in the super-
sonic region and one in the subsonic region, plus the particle path in the
supersonic region (Fig. 2) (the Mach numbers being computed from the
velocities relative to the shock). Therefore, if one pretends to ignore the
shock, one is forced to face a redundancy of data which are inconsistent as
long as no jump is permitted.

It is rather surprising that so much effort has been spent against
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the evidence offered by the method of characteristics and even against a

basic principle of mathematics, as we will see later on.

There is appar-

ently only one possible explanation, which we will try to present here, as

plainly as possible.

1.1 The smearing out of a shock according to von Neumann and Richtmyer.

Let us consider the problem in its historical development.

In 1950,

von Neumann and Richtmyer, trying to solve the problem of shocked flows by

numerical techniques, found the amount of labor involved too great, even

using automatic computers (in 1950, programming for a machine like ENIAC

was extremely cumbersome; FORTRAN was invented many years later).

Von Neumann and Richtmyer had in mind multidimensional shocked flows.

A treatment similar to the one outlined in Ref. 1 was, at that time, beyond

reach, as they stated: ''Shock calculations by direct application of the Hugoniot

equations would ordinarily be prohibitively difficult, even for rapid, auto-

matic computers.' (Ref. 2) Consequently, they suggested a device,inspired

/
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by the physical behavior of a gas crossing a shock. When viscosity and
heat conduction are taken into account, shocks are naturally smeared
out and can be described as a continuous transition. The larger the vis-
cous effects, the wider the transitioral region. It is known that, except
when the gas is rarefied, this region is still too thin to be perceivable.

However, von Neumann and Richtmyer thought that an artificial viscosity

could be forced into the equations of motion in such a way that (i) the
shock trunsition would be spread out over, say, a couple of mesh intervals
(which meant to have an unrealistically large viscosity in that region), but
also (ii) managing to keep the viscous effects negligible in the rest of the
computational mesh, The suggested artificial viscosity for one-dimen-
sional problems depended on a term containing ui.

The aim of the suggested device is to compute inviscid flows with
numerical methods apt to approximate continuous flows, without having to
make special provisions for shocks in advance, but reaching a good approxi-
mation to the inviscid flow solution, except on a two mesh interval bracket-

ing each shock,

1.2 Lax's technique: artificial viscosity and the equations in

conservation form.

In 1954, Lax (Ref. 3) suggested two modifications to the above
approach. The first had to do with a way of introducing artificial viscosity.
To see the idea without complications, consider the equation

£, =8 (1)

Let the points to be computed ( nodal points) be equally spaced along the
x-axis, so that their abscissaeare X = nAx (n=1,2,3,....). Let k
denote a value of time tk =kAt. Let fi: denote the value of f at x = X

and t = ty - Approximate g, by centered differences (gi;_1 - gl;_l)/z Ax



but, instead of writing

k k

K+l ko Bntl ~ Bnol (2)
n n 2AX

as one would do by a straight forward application of Euler's integration

rule, let us write

k K
) ‘1:1 5 ‘];-1 , Bntl " Bn1 (3)
n vJ T A%

In other words, the initial value of f used to approximate the time deriva-
tive at the n-th point is not the value of f at the n-th point but the average
of the values of f at the two neighboring points.

On the other hand, if we consider the equation

fo=&, + Ve (4)
with
2
)3 st

approximate fxx by (¢1+1 + f!l:_l -2 f:) / sz, and use an integration
scheme similar to (2), we obtain (3) again. Terms containing second order
spatial derivatives, such as vfxx, appear in the Navier-Stokes equations,
where v is proportional to the kinematic viscosity of the gas (in non-dimen-
sional form, v is the inverse of a Reynolds number). Therefore, we may
consider (3) as a formula solving a problem of motion, somehow affected by
a pseudo-viscosity whose Reynolds number is of the order of 1/v,

The second innovation in Lax's technique consisted of approximating
by a finite-difference scheme not the well-known Euler's equations
ot+uox+pux =0
{ou, + puu +p =0 (6)

St +qu =,0



but a system written in what is called a divergence form, or conservation

form.,

Such a system can be obtained by algebraic manipulation of (6) or
directly from the equations expressing conservation of mass, momentum

and energy. Let

m = pu (7)
1 1 2 1 1 m?
E=tprgond s tipay (8)
- Y . m v-1 m2
H—u(y—-rp+f°u>'?(YE'Tp_) (9)
q=p+ou’=(y-1)E+ 2L %?i (10)

The conservation equations mentioned above can be written in the form:

ot=-mx
mt=-qx (ll)
l::'t=-Hx

and it is easy to see that (11) is equivalent to (6). Formally, the system
consists now of linear relations between first derivatives. The system, how-
ever, is obviously non linear since the dependent variables are related to one
another by the non linear equations (7), (9), and (10).

Note that (1) may represent all three equations of motion if f and g

are considered as vectors, defined by

o] m
f = ,» 8=-|q (12)
E H

What happens if the motion is steady is remarkable (and, incidentally,

the arguments and conclusions which follow are not limited to one-dimensional



problems). The left-hand sides of the equations vanish identically. There-
fore, the same is true of the right-hand sides. And, of course, the state-
ment holds wherever the original equaticus (11) are applicable, that is,
throughout all region where the flow parameters are continuous and differ-
entiable. On the other hand, consider the Rankine-Hugoniot conditions

across a shock,
P1 V1 =PV
2 2
Py V1 +pl =p,V, +p2 (13)

2

] ) 1 2
hytgv)" =h,+t5v,

where v is the velocity relative to the shock, h is the enthalpy:

.Y
h-mg (14)

and the subscripts 1 and 2 refer to conditions on either side of the shock.
In a steacy state, the velocity v coincides with u. By using the definitions

(7), (10) and (9), the Rankine-Hugoniot conditions can be written as

ml = mz
ql = qz (15)
H) = H,

In other words, the quantities m, q, and H (in physical terms, mass flow,
momentum and total enthalpy) are continuous across a shock. And since

m_ =0, q,, =0, Hx = 0 everywhere else, m, q, and H are constant
throughout the flow. It is obvious, then, that any finite-difference approxi-
mation to the x-derivatives cof m, q, and H vanishes identically, even if the

nodes lie at opposite sides of a shock. By using the equations in the form (11)

their finite-difference counterparts can be used all throughout a shocked flow

even when the individual components of mass, momentum and total enthLalpy,



that is, density, velocity and pressure, are not continuous (and thus not
differentiable) across a shock. Let us hasten to say that a statement of
this kind, although obviously true, is a deceiving one. What it actually
means is that if we compute a steady flow by finite-difference technique

as if it were unsteady, and we use as initial conditions the correct steady
flow, and we use the equations in conversation form, we find that all time
derivatives are zero, and therefore we compute nothing at all. The result
is self-consistent but is trivial.

It is surely a better result than what we would have got, had we
ased a finite difference counterpart to (6) in the presence of a shock since
finite~difference approximations to the space derivatives across a steady
shock would generally provide finite values of the time derivatives, and
therefore local changes in the physical parameters, a result which is
inconsistent with the steady state assumption.

The question is, Does then a set of finite-difference equations
obtained from (11) give better results than a set obtained from (6) when

the flow is not steady? Lax himself did not attempt to prove anything of

the sort; he only advanced some hopeful conjectures. Then he made some

numerical work to try out his innovations. Fig. 3 is a plot of the pres-

sure distribution as described in Table V of Lax's paper, (Ref.3). The

theoretical distribution is a constant line, at p = 50, followed by a con-

stant line at p = 0. The transition should occur approximately where indi-

cated. The figure shows a typical ''qualitatively good' result. Let us

analyze it, however, keeping in mind that two questions must be answered, viz.
(i) Is the transition replacing the shock sufficiently sharp?, and (ii)

Does the conservation form of the equations solve the problem of computing

across a shock?

Two features of the figure should be considered carefully. The
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first is the number of mesh intervals along which the shock is spread.
The second is a mild oscillation appearing in the high pressure side of the
"'shock'" (to make it more evident, part of the plot has been redrawn at a
larger scale in the upper part of the figure). These two features are typ-
ical of numerical effects which are unrelatable to the physical nature of
the flow. We are going to discuss them in detail in the first part of this

paper, showing that the oscillation is the typical symptom of numerical

trouble in attempting to deal with a discontinuity by ''continuous'' tech-

niques, whereas the spreading of the transition over too many mesh

points is the telltale of a gigantic artificial viscosity.

Unfortunately, in Lax's procedure one effect cannot be studied with-
out having the other as well, and conclusions cannot be easily drawn. * How-
ever, one can grasp the idea by comparing Figs. 3 and 4 where some results
obtained by Emery (Ref. 4) with the Lax scheme are replotted. The curve at
the left and the one at the right of Fig. 4 were obtained by using At/Ax = .9 and
At/Ax = .7, respectively. The curve of Fig. 3 corresponds to At/Ax = .25.
In a real shock, for a given Mach number (not much higher than 4), the
shock thickness § is roughly proportional to the inverse of the Reynolds
number. In Lax's scheme,(5) shows that the Reynolds number is propor-
tional to At/AxZ. Therefore, the product 5(At/sz) should be practically
the same for all three cases if the artificial viscosity acts as a real viscos-

ity. Now,8/Ax is the number of intervals over which the 'shock' is spread.

%
This is due to the fact that the Euler's integration rule (2) is uncondi-
tionally unstable and (3), as we have seen, contains artificial viscosity.
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From the figures we find

5/8x At/ Ax 5(At/ sz)
12 .25 3

5 .7 3.5

4 .9 3.6

From the figures of the last column we can conclude that the
effects of artificial viscosity on shock thickness are very similar to the
effects of real viscosity. Unfortunately, we can also see that the artificial
Reynolds number per unit length is of the order of 1/Ax. In practice one
deals with intervals which cannot be smaller than, say, 1/50 of a typical
reference length, lest the computational time increases beyond acceptable
limits. Therefore the artificial Reynolds number is, at most, of the order
of 50,

Figs. 3 and 4 show that the artificial viscosity plays a crucial role
in damping out the oscillations and that an effective damping is ootained
only if the artificial Reynolds number is extremely low, so that the transi-

tion replacing the shock cannot be sufficiently sharp.

1.3. The Lax-Wendroff Technique.

Reducing the artificial viscosity in Lax's scheme entails increasing
the amplitude of the oscillations in the high-pressure side of the shock.
Therefore we cannot evaluate whether the conservation form of the equation
of motion is of any help in computing a flow which contains a sharp disconti-
nuity. For such an analysis, one needs a scheme which can work in the
absence of artificial viscosity. The scheme suggested by Lax and Wendroff
in 1960 (Ref.5) seems to be aimed at increasing the accuracy, and eliminating
artificial viscosity, while maintaining the formulation of the equations in con-
servation form, obviously in the hope that shocked flows could be treated

without shock fitting.



The Lax-Wendroff scheme, in principle, depends on approximating
the unknowns at a time t + At by a Taylor expansion truncated at the second

order terms:
: £t + At) = £(t) + £.At + 4 £ a2 (16)
t 2 tt

expressing the time derivatives through space derivatives, making use of
the equations of motion, and replacing the space derivatives by centered
differences. Lax and Wendroff have applied the scheme to the equations
of motion formulated in conservation form. In the one-dimensional case,
(11) is the starting point. Then (16) is used. To compute ftt’ (1) is
differentiated with respect to t:

fie = Bex
but

g = J ft =Jg,
(where J is the matrix whose determinant is the Jacobian of g with respect
to f), so that

£, = (T 8,), (17)

For no apparent reason, (J gx)x is not resolved into

(J gx)x E ngx T Bxx (18)
but is computed as
k k k k k k k k
+ - =
Ve, = nt1"h EneiEp o h T g -Ena) (19)
x'x 2 Ax 2 Ax Ax

which implies an averaging of J and, thus, a higher truncation error than
if (18) were used.

We would like to mention in passing that the scheme suggested by (16)
does not require the equations of motion to be cast in conservation form.

From a practical point of view, it is more convenient to use Euler's

-
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equations. Recasting the equations of motion in conservation form is a
cumbersome process, particularly when more than one space dimension is
involved. Auxiliary mappings of the physical space onto a computational
space make the procedure even more complicated, if not impossible. The
Jacobian matrices in multi-dimensional problems not only are complicated
but require a great amount of numerical computations which is avoided if
Euler's cquations are used. In conclusion, a program based on the original
Lax-Wendroff suggestion is more complicated (and consequently more
exposed to accidental mistakes), much more time consuming on the machine
and less accurate than a program applying (16) to Euler's equations.

Of course, these disadvantages would be largely balanced by the
possibility of treating shocks as sharp transitions. However, the equations
in conservation form do not keep up to the hopes suggested by Lax's con-
jectures. Fig. 5 shows a typical result obtained by Lax and Wendroff. Here
the oscillations in the high-pressure side of the shock are much stronger

than in Fig. 1. The figure is borrowed from page 333 of Richtmyer and
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Morton's book (Ref. 6), where no explanation is given for the appearance of
the oscillations. It is only stated that the oscillations can be reduced by

adding again an artificial viccosity to the equation of motion.

1.4 Explaining the formation of wiggles.

From the examples above it appears that wiggles tend to form in the
high-pressure side of a shock, regardless of the computational technique
being used, unless artificial damping devices are used. Here we attempt to
explain the formation of such wiggles. We are interested, of course, in a
numerical scheme whose artificial viscosity, if any, is such that the shock
is not spread over more than one mesh interval. We consider a shock

moving from left to right at a constant speed, W, and separating two regions

of uniform flow. Consider three points, labeled n-1,n, and nt+l at the
abscissae x-Ax,x, and x+Ax (Fig.6) and suppose that, when a certain
computation is started, the shock is somewhere between x-Ax and x.

Even if we are willing to accept a continuous transition instead of the

jump at the shock, we must acknowledge that the numerical scheme is

P

pu
P

WP
X-AX %X X+AX X
(n=1) (n) (n+1}

FIG. 6 DISCONTINUITIES ACROSS
A SHOCK
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unable to distinguish between such a transition and a jump,since both take
place between two adjacent nodes and the values of the physical parameters
are defined only at nodes. Under these conditions, we can show how
oscillations build up long before a steady stite, when physically existing,

can be reached.

In the above problem, the three quantities m, q, and H are
higher at the left of the shock than at the right*. The same may be said
of n, p, u, and E. Let F be any of these quantities and let Fig. 7a
represent what the F-distribution should actually be at a certain time t.
In the same figure,a set of initial values for a numerical computation is
also shown, at a discreet number of nodal points. At all nodal points
except A and B the results of a numerical computation are correct. We
are going toanalyze the results of one computational step at points A and
B by assuming that

|,i-ftt «t2|< Ift At | : (20)

Such a condition can always be satisfied if At is chosen sufficiently small.
Note then that the numerical approximations to the derivatives at A and B,
as shown in Fig. 7b by the dotted lines, are negative; according to (11), all
quantities F increase at A and B. At t + At, the actual F-distribution
(where the shock moved somewhat ahead) and the computed F-distribution
are as in Fig. 7c. Now points C and D start being affected by errors and
we analyze the results of a second computational step with (20) still valid.
The approximate derivatives are negative at A, B and D, and positive at C;
consequently F increases at A, B and D and decreases at C (Fig. 7d.)

Without pursuing the argument any further, one can already see the

% They are the same only if the shock is steady.
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FIG. 7 FORMATION OF WIGGLES

formation of a wiggle on the high pressure side of the shock. This is a
common, typical situation, due to a bold, but hardly justifiable, attempt
to compute derivatives across a discontinuity; and it is a first-order
effect. The introduction of higher order terms, as in the Lax-Wendroff
technique, is irrelevant as far as this effect is concerned.

However, as the computation proceeds, the second order terms in
(16) become more and more important and they are finally responsible for
the partially oscillatory and unsymmetrical distributions typified by Fig. 5.
A simple example is offered by the density distribution, which is governed
by the first of (11). The second order term in the finite-difference formula-

tion has the sign of m__ and it grows with m_ As the amplitude of the
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oscillations increases, the contribution of -i- m__ Atz ends by becoming of

the same order as m_At. At point A of Fig. 7d the first order term tends

to increase ~ but the second order term, which is negative, tends to

decrease it.

The same can be said of point C, with the signs reversed.

Consequently, the density distribution tends to freeze in an oscillatory

pattern.

In conclusion, the fact that a certain numerical technique has been

proven to be a valid approximation of a continuous differentiable flow does

not make its use legitimate across a discontinuity. All mathematical proofs

founded on differentiability are invalid and the numerical consequences of

doing something mathematically wrong appear as wiggles on the high pres-

sure side of the discontinuity. An accurate steady state solution cannot be

reached asymptotically since, once the wiggles are formed, the numerical

evolution has very little in common with the physical evolution.

In addition, one can easily see experimentally that a steady state with

discontinuities is numerically unstable, if treated with the Lax-Wendroff

6
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scheme , even if the equations are in conservation form, when the discon-
tinuities lie inside the computational region. A minor perturbation in the
assigned data generates non-zero derivatives and triggers an unsteady, non-
physical evolution. See Fig. 8 where u is plotted after computing 20 steps
of a steady flow (corresponding to a Mach 2 shock) by the original Lax-
Wendroff technique, with At/Ax = .2. The initial values were all exact

= sie
except that u, at one point, had an error of the order of 10 4.

1.5 Inconveniences of artificial viscosity.

The argument developed in the preceding section is based on the
assumption that there is no artificial viscosity, but it holds as long as the
artificial viscosity is too small. It is clear that thc shock transition cannot
be confined to a single mesh interval. It is shown in Ref. 7 that the same
conclusion is reached for a viscous flow. Qualitatively, our argument agrees
with Crocco's analysis of a shock in a viscous flow (Ref.11). In Crocco's
paper the equations are somewhat simplified and a different numerical
scheme is used.

By so doing, it is found that certain distributions of wiggles are
the only possible numerical solution of the shock problem if the mesh size
is too small with respect to the shock thickness. A typical condition found
by Crocco is, for example,

Ax< 8/2
where 6 is the shock thicknes: defined by the ratio of the velocity jump to

the maximum slope of the velocity distribution. If Lax-Wendroff's scheme

* The program used to compute this case is reported in Appendix 1. For the
reader's peace of mind it should be mentioned that no instabilities appear if
the initial values are all exact.
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is used, the wiggle distribution about the shock is asymmetrical. The
amplitude of the oscillations is much higher on the high-pressure side than
on the low-pressure side.

The above considerations show that the perspectives for a practical
usage of artificial viscosity are rather gloomy. Of course, artificial viscosity
makes the numerical procedure once more mathematically legitimate.
However, one faces the unpleasant choice between

(i) a large viscosity (to maintain a coarse mesh and a short computa -
tional time); but, then, the problem solved numerically is not the original

inviscid problem.

(ii) a fine mesh (to reduce the shock thickness and the dissipative
cffects in general to acceptable values); but then, the price to be paid

in terms of computational time becomes too high,

In the simple problem examined in the preceding sections, the dam-
aging effects of artificial viscosity are not as strong as in more complicated

problems. In fact, in most of the computational region the flow is uniform;

all derivatives are zero, and the artificially viscous terms are zero. In
multi-dimensicnal problems where non-uniform steady states can be reached,

the steady state affected by artificial viscosity is generally different from the

physical one for inviscid flow. For example, if Lax's technique is used, the

values of all physical parameters become so distributed that their time incre-

ments exactly balance the errors due to averaging (Ref. 8).
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2. The problem of the accelerating piston.

We are going now to examine a problem which is more interesting
than the shock separating two uniform regions and which leads to a number
of practical applications. It is the problem of what flow is produced in a
gas at rest by a piston moving at variable speed. Let x = b(t) be the tra-
jectory of the piston. Let us assume that the piston was kept at rest when
t < 0 and its motion starts at t = 0, Let us also assume that thc initial
speed of the piston, b(0), is zero. For t > 0 we will assume that b(t) is
;.nalytic and regular.

Let the pressure and density of the gas at rest be the reference

values, Pref and 0 ref and let a reference length, X ef? be chosen arbi-

trarily. A reference velocity is then defined as A/prefh)ref and a refer-
ence tiine as xref/ "lpretjoref . In addition, let
p
7-RP_r p-gn P, S=ytad-(v-1)P (21)
O Pref Pref

i
In non-dimensional form, the equation of motion can be written as follows :

Pt+qu+yux=0

u +uu + JP +0 (22)
t X b4

S, tu S, = 0
The characteristics are defined by

V=& ua (23)

where a is the local speed of sound, a = .,/y . We will say that the

characteristics belong to the first or to the second family if the upper or lower

% The theoretical background supporting the information contained in equations
(28) to (31) is assumed as known ard can be found in Ref. 9.
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sign in (23) is taken, respectively. The compatibility equations along the

characteristics are

n
o

I adP + y du
(24)

n
o

II adP - ydu

If the entropy is constant throughout, the compatibility equations can be

integrated and recast in the form:

1 2 _
=T a+u=2r
(25)
2
= =2
II Y—n-a u S

where r and s are constant along the characteristics. The first character-
istic of the I family issuing from the point (x = 0,t = 0) is the line

x = .J/yt (26)
This line divides the piston-driven flow from the gas at rest. As long as
characteristics of the I family do not coalesce, the region above such a
line is a simple, isentropically compressive wave, corresponding to a con-
stant value of s . The value of u at a point (x,t) in the wave can be exactly

computed as follows.

Let T be the value of t at which the I-characteristic passing through
the point issues from the piston (Fig. 9). Along such line, u, a and X are

constant, so that the line is straight and defined by

x = b(T) + [Bm + al(T)J(t - 1) (27)

where a, (1) is the speed of sound on the piston at time 7. Since s has the

same value inside the simple wave and in the gas at rest,

s=Y*—/—I—I (28)
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from (25.1II) we obtain

1 a1 - b(r) =%{‘7 (29)
that is,
a (1) = Jy + 52 br) (30)

By replacing this value of ay (T) into (27)

x = b1+ [+ BEbm |- (31)

is the equation of a I-characteristic in the simple wave.

Suppose now that one wants to know the u-distribution along the
x-axis at a given time t1 . Equation (31) should be solved for 7, after
replacing t by tl. Then,

u(x, tl) = b(T) (32)
The derivative of u with respect to x is

u(x, t) = b(r) & (33)

-

where % is computed from (31) at constant t:

= b(t)
lu.ll/

x =/Y'}
GAS AT REST

7 —

X

FIG. 9 FLOW PRODUCED B8Y AN
ACCELERATING PISTON
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A — = (34)
* LD b(r) (t-1) - V¥ - L5= b(1)

so that

i 2 b(T) . 35
(y+1) b(7) (t-T) - 2./y - (y-1)b(T)

Similarly, the derivative of u with respect to t is computed:

u =

e b(r) ) (2,7 + (y+1) b(7) ] (36)
E (y+1)b(T) (t=T) - 24/ - (y-1)b(T)

As long as the denominator in (35) and (36 ) does not vanish, the derivatives

of u are continuous and differentiable, except alogg the first characteristic,

defined by (26), if the initial acceleration of the piston is not zero.

When the characteristics coalesce, they define an envelope, which

can be found by differentiating (31) with respect to T:
v+l y-1/ _
—— b(7) (t-7) - Jfy -Tb(T) =0 (37)

and eliminating T between (31)and (37), or else, considering (31) and (37)

as the parametric equations of the envelope:

x = b(*r)+[¢7 + Blp(r) Zﬁ’f(Y,‘,l)i’(”
i (v+1) b(7)
(38)
¢ =14 204 (y-1)b(1)
(y+1) b(7)

As for the point where the characteristics coalesce, we must disvinguish
between two cases.

1) The initial acceleration of the piston, l':;(O), is different from
zero. Inthis case, we can prove that the curve defined by ( 38) is tangent

to the first I-characteristic, defined by (26). Indeed, if T=0 (and, then,
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b(T)=0, b(T)=0), it is easily seen that x and t as defined by (38) satisfy
(26). In addition, dx/dt, computed from (38), turns out to be equal to /Y .
The location of the first characteristic and of the envelope is shown in Fig.10.

Point A, defined by

_ 24y
¢, = —2dY (39)
A (y+1) b(0)

is their common point and is also the point where the characteristics coalesce,
that is, the origin of a shock wave.

It is worth studying how the distribution of a typical parameter, say u,
steepens up in the vicinity of the first characteristic as time increases, until

its slope becomes imfinitely large at A. From (35) vrith 7=0, it follows that

u 2 b (0)

X (y+1)b(0) t - 2./7 o)

td
PISTON x= b(t)
PATH
ENVELOPE

FIG. IO ENVELOPE OF CHARACTERISTICS
FOR THE CASE OF FINITE INITIAL
ACCELERATION
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Fig. 11 shows u asa function of t along the first characteristic, in the

1l
case where b(0) =2, y = 1.4. Note that the motion of the piston does not

affect this steepening process. In fact, the right-hand side of (40) contains

only the parameter g(O). Therefore, regardless of what the phenomenon
is in the rest of the simple wave, the value of u always becomes infinite
at point A. Fig. 12* shows a number of cross-sectional plots of u(x) at
different times between t = 0 and t = tA for the case where the piston path

is defined by
b =t (41)

10

o 1 1 J
0 0.2 04 0.6

—t
FIG. Il PLOT OF uy AS A FUNCTION OF
TIME ALONG THE FIRST CHARACTERISTIC
IN THE FLOW PRODUCED BY A PISTON
MOVING WITH A FINITE INITIAL
ACCELERATION

* Drawn by a Stromberg-Carlson 4020 plotter.
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/

T

=
T

B

FIG. 13 PROVING THE EXISTENCE OF A CUSP IN
THE ENVELOPE OF CHARACTERITICS WHEN
THE PISTON HAS NO INITIAL ACCELERATION

2) The initial acceleration of the piston is zero. In this case u_ on
the first I-characteristic, as given by (40),is identically zero and no steep-
ening of the u(x) curves occurs. This result suggests that no coalescence
of characteristics occurs along the first characteristic. The envelope no
longer has the form shown in Fig. 10.

To find what is the shape of the envelope, consider the second of
(38) which gives t on the envelope as a functionof T. At T = 0, t is infinite.
For all 7> 0, since t.a(”r) > 0, ]':;('r) > 0 for an accelerating , ston, t is
positive. If l':-:('r) does not vanish for T >0, then t tends to © again when T
increases indefinitely. If l'a'('r) vanishes at some T = Tye there t becomes
infinite. In any case, t(T) on the envelope must have a minimum (Fig. 13)

at a certain value B defined by

27 + (1) b(1p)
\F), = o [ - , B_nrgl]=0  (a2)
b2 (rp)

Consequently, for increasing T, t first decreases and then increases, and
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'ENVELOPE

GAS AT REST

FIG. 14 ENVELOPE OF CHARACTERISTICS FOR THE
FLOW PRODUCED BY A PISTON MOVING
WITH THE LAW xp't-"
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the envelope is shaped as in Fig. 14, with a cusp at B. The location of the
cusp now depends on the nature of the piston path. Note that u becomes
infinite at B because u is infinite along the entire envelope, as one can
see by combining (35) and the second of (38). Therefore, the nature of the
u-distribution at the origin of a shock is the same whether the shock occurs
at A or at B. Fig. 15 shows a number of cross-sectional plots of u(x) at

different times between t = 0 and t = t_ for the case where the piston path

B
is defined by
b=t (43)

2.1. Numerical treatment of the problem. First approach.

In the initial phase (prior to the coalescence of characteristics), the
flow is continuous, although the fir.t derivatives of the flow variables may
be discontinuous along the I-characteristic issuing from the origin. Con-
sequently, we may decide to use a single computational region, extending
from the piston (at the left) to an arbitrary boundary located somewhere in
the region of fluid at rest, where the flow parameters are well known. For
simplicity, assume a right boundary moving parallel to the piston (Fig. 16),
thus defined by

x = c(t) = b(t) + X, (44)

The computational region is shown in Fig. 16; it consists of a
segment of the X-axis and the obvious way to relate the physical space to

the computational space is to let

X = x - bt)
(45)
T =1t
Since for any function f{,
f =£f,, f =f. -bf (46)
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in the computational space the equations of motion (22) are, in matrix

form:

f.+Af, =0 (47)

P Ccy O ' .
f=uJ, A=l7CO},C=u-b (48)
S 00 C

All interior points are computed as follows. Equation (47) is differentiated

with

with respect to X and T successively:

% 0—oO O—O—O—? X

PISTON BOUNDARY
- Xo o

FIG. 16 FIRST DEFINITION OF A COMPUTATIONAL REGION

FOR THE PROBLEM OF THE ACCELERATING
PISTON
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fTX + AX fx + A fXX =0 (49)

fop * Apfy t Af =0 (50)

The first and second space derivatives appearing in (47), (49) and (50) are

approximated by centered differences,

sl

fx ~ n+l n-1 (51)
2 AX
k
XX AXZ

To evaluate Ax and AT, note that

/ _1 s‘
J = exp | L=P +2 53
P\ =) (53)
consequently,
" 7
C 0 0
- J =gt 1 = |7
Cy = Uy Yy 7(Y pX+YSX), Ay x Cx 0 | (54)
0 0 C
— x_l
These values are used to evaluate fo. Similarly,
Cr 0 0
Cozu.-b, L =9xLp +Lls),a =7 c. o |
T T Y ¥ y T 3y T ' T T T
L0 0 CT_

and, since U PT and ST are furnished by (47), we have all the necessary
elements to compute fTT' Then (16) is used to proceed one step ahead in
time. As a matter of fact, the entropy is identically zero in this problem
(which we consider finished once the characteristics coalesce), the third

equation could be dropped and the terms S, SX’ ST eliminated; but we pre-
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FIG. 17 TO DETERMINE THE RATIO BETWEEN
At AND Ax

fer to keep them to show a general pattern to be followed for non-isentropic
flows.,

The boundary values in the present case are extremely easy to
compute. At the piston, u=b, S =0, a is given by (30) with t instead of
T, and P follows from (21). At the free boundary on the right, u = 0,
s=0, P=0.

The stepsize in time, AT, is determined as follows. Of the two
characteristics, consider the one which has the larger slope with respect to
the t-axis (for example the one labeled I in Fig. 17); such a slope is safely
defined by |u| + a. If A, B and C are the three points used in the compu-
tation, draw a line issuing fr-m C and symmetric to I. Let D be the inter-
section of I and its symmetric. Every value of At less than BD satisfies
the Courant-Friedrichs-Lewy rule (Ref. 10). Now, BD = Ax/|u| + a) and
80 we assume

at = .7 —Bx (56)
lu| +a

The coding of this program is very easy; a sample code is shown in
Appendix 2 and it should be self-explanator<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>